Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis.

نویسندگان

  • Tobias Zrzavy
  • Simon Hametner
  • Isabella Wimmer
  • Oleg Butovsky
  • Howard L Weiner
  • Hans Lassmann
چکیده

Microglia and macrophages accumulate at the sites of active demyelination and neurodegeneration in the multiple sclerosis brain and are thought to play a central role in the disease process. We used recently described markers to characterize the origin and functional states of microglia/macrophages in acute, relapsing and progressive multiple sclerosis. We found microglia activation in normal white matter of controls and that the degree of activation increased with age. This microglia activation was more pronounced in the normal-appearing white matter of patients in comparison to controls and increased with disease duration. In contrast to controls, the normal-appearing white matter of patients with multiple sclerosis showed a significant reduction of P2RY12, a marker expressed in homeostatic microglia in rodents, which was completely lost in active and slowly expanding lesions. Early stages of demyelination and neurodegeneration in active lesions contained microglia with a pro-inflammatory phenotype, which expressed molecules involved in phagocytosis, oxidative injury, antigen presentation and T cell co-stimulation. In later stages, the microglia and macrophages in active lesions changed to a phenotype that was intermediate between pro- and anti-inflammatory activation. In inactive lesions, the density of microglia/macrophages was significantly reduced and microglia in part converted to a P2RY12+ phenotype. Analysis of TMEM119, which is expressed on microglia but not on recruited macrophages, demonstrated that on average 45% of the macrophage-like cells in active lesions were derived from the resident microglia pool. Our study demonstrates the loss of the homeostatic microglial signature in active multiple sclerosis with restoration associated with disease inactivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P171: Microglia Cell, Major Player in the Central Nervous System Inflammation

Inflammation, a self-defensive reaction against various pathogenic stimuli, may become harmful self-damaging process. Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including alzheimer's disease (AD), parkinson's disease (PD), and multiple sclerosis (MS). In the central nervous system, microglia, the resident innate immune cells play major role in...

متن کامل

P 153: Neuroinflammation in Multiple Sclerosis

Multiple sclerosis (MS) is a complex disease which is correlated with increasing inflammatory factors, demyelination and axonal loss. In this auto-immune disease, Neuroinflammation is mediated by different types of T cells with macrophage/microglial activation and B cells involvement that interact in a collaborative manner. Focal inflammation is the main cause for the onset of relapses and coul...

متن کامل

Relationship between Mitochondrial Dysfunction and Multiple Sclerosis: A Review Study

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system that inflammation, demyelination, oligodendrocyte loss, gliosis, axonal injury and neurodegeneration are the main histopathological hallmarks of the disease. Although MS was classically thought as a demyelinating disease, but axonal injury occurs commonly in acute inflammatory lesions. In MS mi...

متن کامل

P 64: Micro-Rna Disorder and Multiple Sclerosis

Noncoding ribonucleic acids micro-RNA is involved in the regulation of gene expression have major roles in the post-transcriptional level. A micro-RNA alone several causes down regulation of mRNA transcript of the target. Thus, small changes in the expression of a micro RNA may lead to significant changes in gene expression are different. Micro- RNA as key regulators of immune cell lineage diff...

متن کامل

P 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation

P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 140 7  شماره 

صفحات  -

تاریخ انتشار 2017